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Evolution of a passive scalar spectrum in the flow of random waves
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We consider a passive pollutant advected by the flow due to linear random waves with finite attenuation. We
derive the equation that governs the evolution of the pair correlation function of pollutant concentration and
show that it coincides with the equation for the case of a short-correlated velocity. Due to a finite wave
attenuation, nontrivial evolution (particularly, the growth of inhomogeneities) appears already in the second
order in wave amplitudes. We show that random potential waves lead to the growth of concentration inhomo-
geneities. We identify two stationary solutions for the spectral density of concentration, equipartition, and flux
state. Which one is established depends on the relation between mean square velocity gradients due to potential
and solenoidal parts of the flow, respectively. We also analyze transient regimes and show how periodic
component in the concentration distribution appears and disappears.
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In this work we consider the advection of a passive scalar
by a flow which is a superposition of small-amplitude ran-
dom waves with finite attenuation rates. An example of such
a scalar field is the concentration of pollutant on a fluid sur-
face and by passive we mean that the velocity field does not
depend on the concentration.

In a random flow, one expects some mixing [1-6], which
makes the concentration more uniform. On the other hand,
when the flow is compressible (which is the case for waves
on the water) it creates fluctuations of density [6—8]. The
main question: is there a statistical steady state of concentra-
tion fluctuation where production of fluctuations is balanced
by mixing?

Since the mean concentration does not change, the sim-
plest statistical object to study is the second moment. Here
we derive the equation that describes the evolution of the
pair correlation function of the passive concentration in a
random flow of small-amplitude waves with finite attenua-
tion. We show that when the velocity in the wave has a
potential component (i.e., the flow is compressible) the sec-
ond moment of the concentration grow exponentially that is
there are no steady states with a finite mean squared density
(such grows is stopped by molecular diffusion [7] which is
beyond the present consideration). We then show that one
can find steady states which correspond to an infinite mean
squared density. A simplest such state is an equipartition in k
space which corresponds to concentration fluctuations delta
correlated in r space. We show that there exists another
steady-state solution, apart from equipartition. At the wave
numbers far exceeding those of the waves, the spectral den-
sity of the scalar in that second solution depends on the wave
number by a power law. We show that this power law is
determined by the ratio of mean square velocity gradients,
respectively, in the solenoidal and potential components of
the flow (which precisely expresses the relative strength of
mixing versus fluctuation production). We argue that which
steady solution is realized depends on that ratio.

Apart from an asymptotic-in-time approach to a steady
state, it is of both fundamental and practical interest to study
transient processes. It is particularly interesting when waves
have a sharp spectral peak. Does that impose some periodic-
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ity on the distribution of passive density? We shall study the
evolution of the scalar spectral density assuming the initial
state to have wave numbers much lower than those of the
waves. In this case, the large-scale fluctuations of the passive
scalar decay due to simple diffusion. We shall show, both
analytically and numerically, that a series of peaks appear in
the spectral density of passive scalar at wave numbers which
are integer times the peak wave number of the waves. We
shall see in numerical simulations in the simplest one-
dimensional (1D) case how those peaks appear and eventu-
ally disappear and how equipartition is settled.
Consider a concentration n(r,) that satisfies the continu-
ity equation
n =—divnv. (1)
Jat
We assume the velocity statistics to be Gaussian with zero
mean and the variance (in Fourier representation)

WPty =Ep(k.0) Sk + K)o+ o). (2)

We assume that E,,,(k,») has sharp peaks at w=+ w; which
takes place, in particular, for small-amplitude waves with the
frequency w, and a weak attenuation rate (7, <<w;) when

Ep(k,0) = %E,,,(K){[(0 = 0)* + 1] + [(0+ wp)?
+%]7' 3)

As long as E,,,(k)=[E,,,(k,0)do<wi/k* (which means
that fluid velocity is far lass than the phase velocity of
waves), one can apply the perturbation theory to (1) and

derive the equation for the spectral density of the concentra-
tion <nk”lk/>:Hk5(k+k,) [8,9]

JH,

(9_tk =k"k" f (Hk+q - Hk—q - 2Hk)Dmn(q)dqa “4)

Where Dmn(q) =Emn(q > 0) :Emn(q) ‘Yk/ Wwi'

For the Kraichnan model of delta-correlated velocity, the
simultaneous pair correlation function of the passive density
H(r)=(n(r)n(0)) satisfies the equation [6]
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dH(r,1)
ot

where d,,,(r)=D,,,(r)-D,,,(0) and

= VmVndmn(r)H(r9 t) > (5)

D,(r) = fo di{v,(R,1)v,,(0,0)). (6)
0

The correlation function in (6) must be taken in the Lagrang-

ian frame R=v(R), R(0)=r [10], which is close to the Eu-
lerian correlation function in a short-correlated case. Note
that after the Fourier transform Eq. (4) coincides with (5)
assuming D,,,(r)=[D,,,(K)exp[i(k-r)]dk.

Let us briefly present the general properties of (4). First, it
conserves H(k=0), which is the total mass. The kernel
Kk =K S(q)sin? 6,,+ P(q)cos® 6,,] is positive so that
(4) satisfies the maximum principle, that is, the solution can-
not break out of the limits: if m < H(k,1,) <M for all k, then
for any t>1,, m<H(k,r)<M for all k. Large-scale fluctua-
tions of the density simply diffuse if for k<<q one has
H(k)>H(q): 0H(k,t)/ dt=—Dk*H(k,t) where

D= f [S(g)sin® 6,, + P(q)cos® 6,,1dbfq. (7)

The most interesting property of (4) is the growth of density
inhomogeneities due to the potential part of the flow

dN

T2 A= f GnmDun(@)dq = f q*P(g)dq. (8)
Note that the growth rate of the second moment is exactly
minus twice the entropy production rate determined by
the pair-correlation function of w=divv [10]: A\
=[(w(R,)w(0,0))dt= [{w(0,t)w(0,0))dt. One can roughly
estimate the growth rate of density fluctuations as follows:

N = ((div v))y,0,” = o(w/o) (KREK) ). (9)

To give it a numerical value, take short gravity waves with
periods in seconds, ,/w;~107° and kv/w,=10"" then
1/N=10°s,ie.,a couple of hours. One can also compare (8)
with the estimate \~{(div v)*)}{(curl v)2>w;3 obtained in
Ref. [8], which gives zero for purely potential waves.

Let us describe now the evolution of the passive scalar
spectral density. There is an evident steady solution of (4)
which is equipartition: H;=const. It corresponds to
H(r) o &(r). Are there other steady solutions?

We consider an isotropic case and presume that both so-
lenoidal and potential components are present in the flow

Dn9m

Dnm(q)=S(q)<5nm_ q2 >+P(Q)M

10
7 (10)

The Fourier transform is convenient to represent via two
other functions, u(r) and c(r),

3.\ 2.\
dop(r) = { (r:zl) - c}rzxsaﬁ— [@ - c] Tol'gs

so that we can write (5) in the spherical coordinates
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OH=r"L(rH)=r"9,r uHd,(H/H,), (11)
®© ! d ’

Hiy(r) = exp f dr)dr ) (12)
. ru(r’)

One can show that the operator L has no positive eigenval-
ues [7] and that the solution of (11) evolves towards the
steady state Hg, as long as the solution grows at r—0 not
faster than r~2 so that H(k=0)=[H(r)dr is finite. That re-
quires ¢(0)/u(0)<2. Note that ¢(0)=N/24. Denote also

N=J¢*S(q)dq. Then ¢(0)/u(0)=8\/(3A+\)<2 means
A<N\. One can say that N characterizes production of fluc-

tuations while N characterizes mixing. Note in passing the
Lyapunov exponents of the Lagrangian flow in this case:
No=—N/2+(X+3\)/16.

Therefore, we see that if the mean squared gradient of the
solenoidal part exceeds that of the potential part of the flow,
the steady-state solution is not an equipartition. Indeed,

H (k) KON a6 b oo (13)

In a purely solenoidal case, H(k)*k~? is called the Batch-
elor spectrum; it carries a constant flux of n? towards large k
and presumes some source of fluctuations at large scales

[11]. And generally at N<<X, (13) decays at k— o, that is,
corresponds to some flux from small to large k£ while equi-
partition evidently carries zero flux. Note that when A #0
one does not need an external source at large scales (as in
purely solenoidal case) since the potential part of the flow
creates concentration fluctuations.

Let us now consider (4) at wave numbers exceeding those
in the spectrum of waves in more detail. Assuming that the
spectral energy of waves E(k) falls off faster than any power
(say, exponentially) we can use the differential approxima-
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FIG. 1. Evolution of spectral density of passive scalar in 1D.
Waves have a spectral peak at k=1.

067304-2



BRIEF REPORTS

tion in ¢/k (also called the Batchelor regime, which consid-
ered small-scale fluctuations of passive scalar in the large-
scale velocity field [11]):

0H(k,1)

JH(k,r)  ~ FPH(k,1)
§———= — T

(N +3N)k3 i (BN + Nk
(14)

In logarithmic coordinates in a moving reference frame, ¢
=In(k)+(X—\)t/4, one obtains a simple diffusion equation:

JH(L.1)  (N+3\) PH(L.1)
a8 i’

(15)

Note that \ and X are non-negative quantities so that small-
scale harmonics of passive density undergo diffusion in &
space (in logarithmic coordinates).
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An appropriate solution is H(k,r)xerf{-[4 In k+(\

—N)t]*/8(X+3\)7} when the front velocity, AN, is positive.
It is in this case that the equipartition is established while H;
does not have a physical meaning since it corresponds to an
infinite integral. This is realized in particular in the one-
dimensional case analyzed in Ref. [12]. On the contrary,
when A <N\, the solution H decays faster than equipartition
at k—oc and it is established.

Of course, there may be many interesting transient pro-
cesses on the way to the steady state [2]. A particularly in-
teresting case is when wave spectrum D(q) has a peak
around some ¢, while initially only large-scale fluctuations
of the scalar are present, i.e., H(k,0) is nonzero only for k
<gq. In this case, it is clear from (4) that initially H(k,7)
starts to grow at k= qq with dH(Kk)/dte H(0)D(q), then the
peak around k=2q, will grow, etc. Such an evolution for the
one-dimensional (purely potential) case is shown in Fig. 1
with equipartition eventually covering the whole spectrum.
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